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Abstract. A unified treatment of quantum mechanical oscillatory motion in one dimension is
presented in a phase space formalism which is especially adapted to the semiclassical energy
domain and closely related to a ‘naive’ quantization of action and angle variables. Characteristics
of this scheme are non-classical symmetry properties of the phase space functions representing
density operators and observables and the inclusion of half-Bohr orbits besides the familiar
Bohr orbits. Over long time intervals the quantum evolution can be well approximated by
a Hamiltonian flow along these distinguished classical orbits. The interplay of this reduced
classical evolution and the symmetry properties of the phase space functions results in a
consistent quantitative description of quantum interference effects which are most clearly seen
in the revivals of wavepackets.

1. Introduction

The last years have seen a steady interest in and development of semiclassical calculation
schemes, most of them related to studies of quantum chaos [1]. However, the most natural
application of semiclassical ideas are integrable systems whose evolution is characterized
by a high degree of regularity (conserved quantities, symmetries, etc). In the following,
only the simplest motion of this kind is considered: oscillations of a particle in a one-
dimensional potential. Results obtained for these systems are easily generalized to periodic
motion in D > 1 dimensions if the considered system is integrable and separable in the
classical sense, i.e. ifD pairs of action and angle variables can be explicitly constructed for
the classical system.

The discussion presented in this paper aims at the following goals:
(i) to combine a number of known results on action and angle variables in quantum

mechanics, phase space representations of operators, semiclassical matrix elements,
expectation values and their evolution in time into a single unified and consistent
semiclassical phase space formalism (S-formalism for semiclassical operators);

(ii) to show that for a high energies scheme (i) is essentially equivalent to first
reformulating the classical problem in terms of action and angle variables and then
quantizing it in a naive way where the action is treated like an angular momentum conjugate
to the angle and anti-clockwise rotations are excluded as unphysical;

(iii) to illustrate the fact that there exists no universal quantization scheme, such that
the sequence ‘dequantization–canonical transformation–quantization’ could be replaced by
a unitary transformation (or at least an isometric one);
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(iv) to point out that both (i) and (ii) naturally lead to a doubling of classical orbits
which are relevant for semiclassical calculations (half-Bohr orbits besides the familiar Bohr
orbits) and to non-classical symmetry properties of the phase space functions representing
observables and density operators.

The paper is organized as follows: in section 2 we review the definition of various
phase space functions related to operators and fix our notation. In section 3 we first present
a list of exact formulae for the quantum mechanical expectation value of a given observable
for a given state of the system. In these formulae the input which characterizes both the
state and the observable ranges from matrix elements to phase space functions. Among
the latter are the well known Wigner–Weyl representatives (W -functions) [2, 3], which are
considered here as the classical equivalent of the operators. Usually these quantities are
given as functions of momentum and position, whereas the variables used in the following
discussion are the classical action and angle variables. It is shown that there exists another
set of functions of the same variables, which are in one-to-one correspondence with the
operators (S-formalism), and that expectation values can be calculated by means of these
S-functions in exactly the same way as it is done in the Wigner–Weyl formalism. After
having shown the equivalence of the different formulae for the expectation value we discuss
in section 4 how the physical interpretation of theS-functions is related to the validity of
an approximation used to calculate a matrix representation of the related operators. This
approximation, sometimes called the Heisenberg correspondence principle [4], relates the
matrix elements of an operator in energy representation to its Weyl representative. It is
pointed out that this relation is not valid in general, but makes sense only for a certain
class of operators which depends on the dynamics of the system (‘semiclassical’ operators).
Seen from a more fundamental point of view, this formula defines a mapping of classical
phase space functions onto operators which differs from standard quantization if, and only
if, the classical function is not invariant under a certain smoothing procedure (a phase
space function which is not ‘semiclassical’). In section 5 we show that a quantum theory,
which differs from the restriction of standard quantum mechanics to semiclassical operators
only by minor technical details, is obtained along the following route. (i) Consider only
a restricted set of phase space functions. (ii) Quantize them by treating the action like
an angular momentum and by mapping exponentials in the angle onto unitary operators.
(iii) Fix an ordering scheme for products of these basic operators. (iv) Exclude all operators
related to anti-clockwise rotations.

In section 6 we turn to the time evolution of quantum mechanical expectation values
for the case where both the density operator and the observable are, at least to a good
approximation, semiclassical operators. Here we introduce an approximation of the
frequencies associated with the matrix elements of the operators in energy representation
and distinguish three different levels of accuracy; they give rise to three different time
intervals, for which the quantum evolution may be replaced by a dynamics derived from
classical mechanics. (i) For short times the quantum evolution is indistinguishable from the
classical evolution. (ii) For a much longer time interval the evolution can still be described
by a Hamiltonian flow, however not on the whole phase space but only on a selected set of
classical orbits; within this period typical quantum (interference) effects do occur and can
be well described, both qualitatively and quantitatively, by means of this modified classical
dynamics. (iii) For still longer time intervals one has essentially to go back to the quantum
evolution; but if the Hamilton operator is also a semiclassical operator one can, instead of
solving its eigenvalue problem, use the Maslov (EBK, torus, . . .) quantization condition to
obtain the eigenvalues. Our conclusions are summarized in section 7 where our work is
also compared to related approaches.
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As is clear from the discussion in sections 4 and 5 the usefulness of the present
and similar semiclassical schemes for calculating semiclassical expectation values depends
crucially on the explicit knowledge of the energy representation of the operators of interest
or on the validity of the semiclassical approximation for these matrix elements. A list of
conditions an operator has to satisfy, such that the Heisenberg correspondence holds true
(within a given error bound), is presented in this paper, as well as equivalent conditions
for the related phase space functions. All these conditions depend both on the classical and
the quantum mechanical dynamics of the system at hand. While they are useful to discuss
structural relations they cannot be applied in a special case without explicit knowledge of
the classical action and angle variables and a complete set of eigenfunctions of the Hamilton
operator. What would be needed from a practical point of view, especially to estimate the
quality of expectation values calculated according to our scheme, aresufficientconditions
which hold for whole classes of Hamiltonians and operators. For anharmonic oscillators a
partial answer to this open question is given in the subsequent paper where certain operators
related to coherent states of high energy are shown to have the desired properties.

2. Basic concepts and notation

In the following we consider systems with Hamiltonians of the form

H(P,X) = 1
2P

2+ V (X) (1)

whereV (X) > V (0) = 0 and the potential is assumed to increase indefinitely for|X| → ∞.
We further assume thatV is an even function, i.e.V (X) = V (−X); this simplifies the
calculations but should have no impact on the qualitative features of our discussion. We
consider only energy ranges where the equationH(P,X) = E describes a single closed
curve in the two-dimensional phase planeR2. Under the classical evolution of the system
the points of phase space are shifted clockwise along these curves as time proceeds. The
description best adapted to this kind of motion uses action and angle variables [5] instead
of momentum and position. The new variablesI andΘ vary over a semi-infinite cylinder

C+ : 06 I <∞ − π 6 Θ 6 π (2)

(note thatI,Θ andI,Θ+2π represent the same physical state). In terms of these variables
the evolution is simply a translation along the linesI = constant

(I,Θ)→ (I,Θ+ ω(I)t) (3)

where

ω(I) = d

dI
H(I) > 0 (4)

H(I) = H(I,Θ) = H(P,X). (5)

Here, and in the following, we consider equations of the formF(I,Θ) = F(P,X) as
identities: if, for instance,F(P,X) and the functional dependence ofP andX on I andΘ
are known, thenF(I,Θ) = F(P[I,Θ],X[I,Θ]) is the defining equation of the functionF.
The transitionP,X→ I,Θ is a canonical transformation with functional determinant equal
to one; hence∫

dP dXF(P,X) =
∫

dI dΘ F(I,Θ) (6)

where it is understood that the integrations are performed over the planeR2 and the cylinder
C+, respectively. In the following we will work almost exclusively with the variablesI,Θ
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which, from a practical point of view, requires the explicit knowledge of the canonical
transformationP,X→ I,Θ and its inverse. Instead of a functionF(I,Θ) we will frequently
consider the functionsFM(I), M = 0,±1,±2, . . . which appear in the decomposition

F(I,Θ) =
∑
M

FM(I) eiMΘ. (7)

If A is the observable of interest and(1/h)Z the distribution function which describes the
state of the system,

Z = Z∗ Z > 0
1

h

∫
dI dΘ Z(I,Θ) = 1 (8)

the classical expectation value is given by

〈A〉CZ =
1

h

∫
dI dΘ A(I,Θ)Z(I,Θ). (9)

In general, the distribution function(1/h)Z will not be stationary but evolve according to

Zt (I,Θ) = Zt=0(I,Θ− ω(I)t) (10)

(cf equation (3)) and the expectation value (9) will change accordingly.
When the system is quantized its evolution in time is determined by the Hamilton

operatorĤ = H(P̂ , X̂).
Ĥ |n〉 = E(n)|n〉. (11)

The indexn = 0, 1, 2, . . . not only labels the eigenvalues in increasing order,E(0) <
E(1) < E(2) < · · ·, but also gives the number of nodes of the eigenfunctions〈x|n〉 = ψn(x)
(because of time reversal symmetry these functions can always be chosen to be real). Besides
the orthonormalized eigenstates|n〉 we also need the (normalized) coherent states|P,X〉
whose wavefunctions inx-representation read

〈x|P,X〉 = (πh̄)−1/4 e−iPX/2h̄+iPx/h̄−(x−X)2/2h̄. (12)

The coherent state|P(I,Θ),X(I,Θ)〉 is abbreviated as|I,Θ〉. Properties of the coherent
states used in the following are the scalar product

〈P,X|P ′, X′〉 = exp

{
− (P − P

′)2+ (X −X′)2
4h̄

}
× exp

{
i
(PX − P ′X′)− (P − P ′)(X +X′)

2h̄

}
(13)

and the completeness relation

1̂= 1

h

∫
dP dX |P,X〉〈P,X|

= 1

h

∫
dI dΘ |I,Θ〉〈I,Θ|. (14)

Besides the HamiltonianĤ we consider two sets of operators, namely observables,
denoted by the symbol̂A, and density operators, denoted byẐ; when general properties of
these operators are discussed we use the symbolF̂ . We assume that each of these operators
is explicitly given in one of the following forms: (i) the energy representation (matrix
elements〈n′|F̂ |n′′〉); (ii) the x-representation (kernel〈x ′|F̂ |x ′′〉 = F(x ′, x ′′)), related to (i)
by

F(x ′, x ′′) =
∑
n′,n′′

ψn′(x
′)〈n′|F̂ |n′′〉ψn′′(x ′′)∗ (15)
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or (iii) the Weyl representative (W-function)F , related to (ii) by [3]

F(P,X) =
∫ ∞
−∞

dx e−iPx/h̄F
(
X + x

2
, X − x

2

)
(16)

F(x ′, x ′′) = 1

h

∫ ∞
−∞

dP eiP(x ′−x ′′)/h̄F
(
P,
x ′ + x ′′

2

)
. (17)

We identify theW -function with the classical counterpart of the operatorF̂ by assigning the
same name to both of them. For example, the term ‘state’ is used for all Weyl representatives
of density operators (‘Wigner functions’) although most of them assume negative values in
certain regions of phase space. We refrain from giving a physical meaning to every operator
or phase space function, even if the name suggest one, but restrict physical interpretation
to classical and quantum mechanical expectation values.

The mapping of operators onto phase space functions andvice versadepends on the
existence and meaning of the integrals (16) and (17). In the following we focus on operators
F̂ which belong to the Hilbert–Schmidt class. This set consists of all operators for which

‖F̂‖2 = 〈〈F̂ , F̂ 〉〉 <∞ (18)

where the scalar product of two operators is defined by

〈〈F̂ , Ĝ〉〉 = Tr F̂ †Ĝ

= 1

h

∫
dP dXF(P,X)∗G(P,X)

= 1

h

∫
dI dΘ F(I,Θ)∗G(I,Θ). (19)

It is seen from TrẐ†Ẑ = Tr Ẑ2 6 1 and equation (19) that all density operatorsẐ are
Hilbert–Schmidt, and that the quantum mechanical expectation value has the form of a scalar
product if the observablêA is also a Hilbert–Schmidt operator. This formal restriction of the
observables under consideration has no physical consequences because the action of these
operators is only of interest in a finite-dimensional subspace of the Hilbert space, which is
related to a certain energy range and fixed by the density operator. When the elements of an
infinite matrix are set equal to zero, except for a finite-dimensional submatrix, the original
observable is transformed into a Hilbert–Schmidt operator which has the same physical
meaning for the states under consideration. Mathematically the restriction to Hilbert–
Schmidt operators has the advantage that this set, endowed with the scalar product (19)
and the norm (18), is isomorphic to the Hilbert space of square integrable functions defined
on the phase spacesR2 or C+, respectively

h〈〈F̂ , Ĝ〉〉 = 〈F,G〉2 h‖F̂‖2 = ‖F‖2
2
. (20)

The norm‖F̂1−F̂2‖ = ‖F1−F2‖2 provides a natural measure for the difference between two
operators or the related phase space functions. This is especially of interest if the density
operator or/and the observable are replaced by ‘similar’ ones in an expectation value. Since
the expectation value has the form of a scalar product (19) the Schwarz inequality can be
used to estimate the error induced by this substitution in terms of the norms‖F̂1− F̂2‖.

The Weyl representatives are not the only set of phase space functions which contain
the same information as the operators. An alternative set is provided by theQ-functions
[6],

FQ(P,X) = 〈P,X|F̂ |P,X〉 (21)
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which may be obtained from theW -functions by smoothing

FQ(P,X) =
∫

dP dXK(P,X|P ′, X′)F (P ′, X′) (22)

K(P,X|P ′, X′) = 2

h
exp

{
− (P − P

′)2+ (X −X′)2
h̄

}
. (23)

The smoothing kernel (23) appears also in the implicit definition of theP -functions [6],
which constitute a third set of phase space representatives

F(P,X) =
∫

dP dXK(P,X|P ′, X′)FP (P ′, X′). (24)

Formally equation (24) can be solved forFP ,

FP (P,X) = exp

{
− h̄

4

(
− ∂2

∂P 2
+ ∂2

∂X2

)}
F(P,X) (25)

but the resulting series need not converge. The meaning of a divergent series follows from
the combination of aP - with aQ-function in the scalar product (19)

〈〈F̂ , Ĝ〉〉 = 1

h

∫
dP dXFP (P,X)∗GQ(P,X) = 1

h

∫
dI dΘ FP (I,Θ)∗GQ(I,Θ) (26)

whereGQ is a rapidly decreasing function andFP a tempered distribution. Equation (26)
follows from (19) and (22)–(24), or from (21) and the ’diagonal representation’ [6]

F̂ = 1

h

∫
dP dX |P,X〉FP (P,X)〈P,X|

= 1

h

∫
dI dΘ |I,Θ〉FP (I,Θ)〈I,Θ|. (27)

3. TheS-formalism

The expectation value of an observableÂ in a state given by the density operatorẐ can
be calculated in various ways. For a discussion of approximations to the exact quantum
mechanical expectation value the following equivalent expressions are of interest.

〈Â〉Ẑ = 〈〈Â, Ẑ〉〉
=
∑
n′,n′′
〈n′|Â|n′′〉∗〈n′|Ẑ|n′′〉 (28)

= 1

2π

∑
n̄

∫
dΘ aS(n̄h̄,Θ)∗zS(n̄h̄,Θ) (29)

= 1

h

∫
dI dΘ AS(I,Θ)∗ZS(I,Θ) (30)

= 1

h

∫
dI dΘ A(I,Θ)∗Z(I,Θ). (31)

Whereas (28) and (31) are familiar formulae theS-functions fS(n̄h̄,Θ), f = a or z, and
FS(I,Θ), F = A or Z, occurring in (29) and (30) call for explanation. Both these functions
derive from the matrix elements in the energy representation. The first step in passing from
(28) to (29) consists in a special choice of performing the double summation in (28). Instead
of the double indicesn′, n′′ one uses the double indices

n̄ = 1
2(n
′ + n′′) δn = n′ − n′′ (32)
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which range over

n̄ = 0, 1
2, 1, 3

2, . . . δn = integer. (33)

However, care must be taken in which order the two summations are performed and
which pairs of indices correspond to non-negative integer values of bothn′ and n′′. If
the summation overδn is performed first, then

∞∑
n′=0

∞∑
n′′=0

9(n′, n′′) =
∞∑
n̄=0

∑
δn

(n̄)9(n̄+ 1
2δn, n̄− 1

2δn) (34)

where ∑
M

(n̄)8(M) =
2n̄∑

M=−2n̄

γ (2n̄+M)8(M) (35)

γ (m) = 1
2[1+ (−1)m]. (36)

The functionsfSM(n̄h̄), the Fourier coefficients of the function

fS(n̄h̄,Θ) =
∞∑

M=−∞
fSM(n̄h̄) eiMΘ (37)

are then defined by

fSM(n̄h̄) = γ (2n̄+M)〈n̄+ 1
2M|F̂ |n̄− 1

2M〉 for |M| 6 2n̄ (38)

and

fSM(n̄h̄) = 0 for |M| > 2n̄. (39)

These definitions and the orthogonality relations of the exponentials exp{iMΘ} ensure that
(29) and (28) yield the same result. Note that the factorγ (2n̄+M) in (38) entails that for
integern̄ only exponentials with evenM occur in the sum (37) while for half-integern̄ the
function fS(n̄h̄,Θ) has only Fourier coefficients with odd indexM. Accordingly∫

dΘ fS(n̄h̄,Θ)∗gS(m̄h̄,Θ) = 0 if n̄+ m̄ 6= integer (40)

and the functions (37), called ‘profiles’ in the following, satisfy the symmetry relation

fS(n̄h̄,Θ+ π) = (−1)2n̄fS(n̄h̄,Θ). (41)

The change from the discrete variablen̄h̄ to the continuous variableI is achieved by
‘smearing out’ the profiles sitting on the orbitsI = n̄h̄ and combining them into a single
function

FS(I,Θ) =
∞∑
n̄=0

fS(n̄h̄,Θ)Cn̄h̄(I− 1
2h̄). (42)

In (42) the functionsCy(x) are step functions defined by

Cy(x) =
{

1 for |x − y| < h̄/2
0 for |x − y| > h̄/2.

(43)

The reason for choosing just these boundaries for the step functions (43) and for shifting
the argument by ¯h/2 in (42) is that this choice will allow us to relate the S-functions to
approximate matrix elements obtained from theW -functions (see section 4 later). These
conventions, certainly appropriate for the harmonic oscillator, will be made for all symmetric
binding potentials; but we do not exclude the possibility that a deeper analysis will finally
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lead to a shift of the centres of the step functions which depends on the potential at hand
(see also the remarks after equation (128), section 6).

Definition (43) results in∫
dI Cn̄h̄(I− 1

2h̄)Cm̄h̄(I− 1
2h̄) =


h̄ for |n̄− m̄| = 0

h̄/2 for |n̄− m̄| = 1/2

0 for |n̄− m̄| > 1/2.

(44)

This, together with (40), transforms (30) in (29) when the integration overI is carried out.
The value ofFS on the orbitsI = (n̄ + 1

2)h̄ is undefined but this is irrelevant since these
orbits form a set of measure zero. Equations (42), (43) and (37)–(39) show that the function
FS is uniquely determined by the matrix elements〈n′|F̂ |n′′〉; this mapping of matrices to
S-functions is one-to-one because

〈n̄+ 1
2M|F̂ |n̄− 1

2M〉 = γ (2n̄+M) lim
ε→0

FSM([n̄+ 1
2h̄+ ε). (45)

TheW - and theS-functions are both defined on the phase spaceC+ and both of them
are in one-to-one correspondence with the operators of the Hilbert–Schmidt class. The
relation between the two sets of functions is determined by the functions which represent
the elementary operators|n′〉〈n′′|. In the Wigner–Weyl formalism these operators are
represented by functionsWn′,n′′(P,X) which can be calculated by means of (15) and (16)
once the eigenfunctionsψn(x) are known, i.e. the construction of the functionWn′,n′′(P,X)

requires that the eigenvalue problem of the Hamiltonian inx-representation has been solved
completely beforehand. One fact should be noted in this context because it will turn out to be
of relevance in the following discussion. The functionsWn,n(P,X) related to the projection
operators|n〉〈n| are uniquely determined by the Hamiltonian alone, but the explicit form
of the functionsWn′,n′′(P,X) with n′ 6= n′′ depends also on the conventions made for the
phases of the eigenfunctions (the signs ofψn(x) andψ ′n(x) at x=0, if they are chosen to
be real). Since the operators|n′〉〈n′′| form an orthonormalized basis of the Hilbert–Schmidt
operators, the functionsWn′,n′′(I,Θ), obtained from the functionsWn′,n′′(P,X) by a change
of variables, form an orthonormalized basis of the Hilbert spaceL2(C+),

1

h

∫
dI dΘ Wn′,n′′(I,Θ)∗Wm′,m′′(I,Θ) = δn′,m′δn′′,m′′ (46)

F(I,Θ) =
∑
n′,n′′
〈n′|F̂ |n′′〉Wn′,n′′(I,Θ) (47)

〈n′|F̂ |n′′〉 = 1

h

∫
dI dΘ Wn′,n′′(I,Θ)∗F(I,Θ). (48)

These equations include the relations between scalar products and norms of operators and
those of the relatedW -functions, equation (20). Relations analogous to (46)–(48) hold for
the S-formalism where the elementary operator|n′〉〈n′′| is represented by the function

Sn′,n′′(I,Θ) = Cn̄h̄(I− 1
2h̄) eiδnΘ. (49)

If the argument of theS-functions can be interpreted as classical action and angle variables
(which is by no means obvious, see section 6), the functions (49) are also defined on
the classical phase space and uniquely determined by the classical Hamiltonian and the
conventions used in the definition ofΘ (explicit form of the function2(P,X) = 0).

1

h

∫
dI dΘ Sn′,n′′(I,Θ)∗Sm′,m′′(I,Θ) = δn′,m′δn′′,m′′ (50)

FS(I,Θ) =
∑
n′,n′′
〈n′|F̂ |n′′〉Sn′,n′′(I,Θ) (51)
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〈n′|F̂ |n′′〉 = 1

h

∫
dI dΘ Sn′,n′′(I,Θ)∗FS(I,Θ). (52)

Because of (50)–(52)

h〈〈F̂ , Ĝ〉〉 = 〈SS,GS〉2 = 〈F,G〉2 (53)

and henceh‖F̂‖2 = ‖FS‖2
2
= ‖F‖2

2
. Equation (53) shows that the mappingF → FS

is an isometry. Because there exist infinitely many square integrable functions which
are orthogonal to all functions (49), for example, all the functionsNn′,n′′(I,Θ) =
Sn′,n′′(I,Θ) exp{2iπ I/h̄}, the set of allS-functions forms a proper subspace ofL2(C+),

L2(C+) = L2
S(C+)⊕ L2

⊥(C+) (54)

L2
S(C+) = span of the functionsSn′,n′′ . (55)

Since the Fourier componentsFSM(I) of the S-functions are step functions inI with a step
width of h̄, it is clear that the scalar products of these functions with functions, which
are oscillating inI with frequencies higher than 2π/h̄, are of extremely small magnitude.
The transitionF → FS is therefore a transition to ‘smoother’ functions, which carry the
same physical information as the original functions. Because of equations (46)–(48) and
(50)–(52) theW - andS-representative of an operatorF̂ are related by

TF = FS T †FS = F (56)

where the mappingsT : L2(C+) → L2
S(C+) andT † : L2

S(C+) ⊕ L2
⊥(C+) → L2(C+) ⊕ {0}

are given by the kernels

T (I,Θ|I′,Θ′) = 1

h

∑
n′,n′′

Sn′,n′′(I,Θ)Wn′,n′′(I′,Θ′)∗ (57)

T †(I,Θ|I′,Θ′) = 1

h

∑
n′,n′′

Wn′,n′′(I,Θ)Sn′,n′′(I′,Θ′)∗. (58)

It follows from these definitions that

T †T = 1 unity operator inL2(C+)
TT † = P projection operator ontoL2

S(C+). (59)

The effect of applying the projection operatorP with kernel

P (I,Θ|I′,Θ′) = 1

h

∑
n′,n′′

Sn′,n′′(I,Θ)Sn′,n′′(I′,Θ′)∗ (60)

onto an arbitrary functionF ∈ L2(C+) is twofold, as can be seen from the definition of the
functionsSn′,n′′(I,Θ) (cf equations (43), (49) and (34)–(36)). First, the Fourier components
FM(I) are transformed into step functionsF′M(I) which are constant within intervals of width
h̄; second, these step functions are forced to vanish forI < |M|h̄/2 (see equations (39) and
(42)). Both these effects can be seen as a kind of smoothing; while the first step eliminates
rapid oscillations inI, the second eliminates rapid oscillations inΘ when I is small (low
energies).

4. Semiclassical matrix elements

The variablesI,Θ, which replaced the discrete variablesδn and n̄, were introduced in (37)
and in (42) in a purely formal way. The fact that these variables also vary over the range
(2) and that equations (30) and (31) yield the same result suggests to interpret them also as
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action and angle variables. This interpretation would be more convincing if theS- and the
W -representatives occurring in (30) and (31) were of similar form but relations (54)–(60)
indicate that such a coincidence will be the exception rather than the rule. It is also not
difficult to find examples where the two functions representing the same operator look quite
different and the norm of their difference is large compared to the (identical) norm of the two
functions. Before we present examples of such a discrepancy for two density operators of
physical interest, let us first discuss in general terms when theS- and theW -representatives
of an operator are similar, in a sense to be specified, or even coincide. This problem does
not only affect the physical interpretation of theS-functions, but is closely related to the
validity of a well known approximation for the matrix elements〈n′|F̂ |n′′〉 and becomes of
interest when the quantum evolution of the system is studied (section 6).

Consider the operators for which

F = FS. (61)

In the following, operators satisfying (61) and the related phase space functions will be
called ‘strictly semiclassical’. Note that the meaning of this term depends both on the
classical and on the quantum dynamics of the considered system: whether a given operator
is semiclassical or not depends on the Hamiltonian. To check whether (61) is satisfied for
a given operatorF̂ , one first has to calculate itsW -representativeF(P,X) by means of
relations which are independent of the dynamics. Then the variables have to be changed to
action and angle; this requires knowledge of the classical Hamiltonian, because otherwise
the functionsP(I,Θ) and X(I,Θ) could not be calculated. To find the function on the
right-hand side of (61) the eigenfunctions of the Hamilton operator have to be calculated
first. In addition conventions enter on both sides: on the right-hand side it is the phase of
these eigenfunctions, on the left-hand side the choice of the curve2(P,X) = 0.

Although we do not know whether equation (61) can be satisfied for other Hilbert–
Schmidt operators than̂F = 0̂, other solutions can be found if restriction (18) is dropped.
For instance, it is easily verified that theW - and theS-representative of any multiple of the
unity operator are the same constant function. No matter what the original set of operators
or related phase space functions is, equation (61) will in general restrict this set to a proper
subset. Relation (61) impliesPF = PFS = FS = F but PF = F is only a necessary
condition for (61) to hold true. The necessary and sufficient condition for a W-function
F ∈ L2(C+) to be strictly semiclassical is

TF = F (62)

that for theS-representativeFS ∈ L2
S(C+) is

PT †FS = FS (63)

and the equivalent condition for the Hilbert–Schmidt operatorF̂ reads

〈n′|F̂ |n′′〉 =
∑
m′,m′′

T̃n′,n′′;m′,m′′ 〈m′|F̂ |m′′〉 (64)

where

T̃n′,n′′;m′,m′′ = 1

h

∫
dI dΘ Wn′,n′′(I,Θ)∗Sm′,m′′(I,Θ) = 1

h
〈Wn′,n′′ ,Sm′,m′′ 〉2. (65)

To determine all solutions of equations (62)–(64) for a given set of functions or matrices
is an open problem. The interest in the solutions of these equations stems from the fact that
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for strictly semiclassical operators the matrix elements in energy representation are related
to the classical functions (more precisely, theW -functions) by the relation

〈n′|F̂ ′|n′′〉 = 1

h
〈Sn′,n′′ ,F〉2 = 1

h̄

∫ (n′+n′′+2)h̄/2

(n′+n′′)h̄/2
dI Fn′−n′′(I). (66)

This equation can be seen in two ways. On a fundamental level (66) constitutes an alternative
quantization scheme which assigns to each phase space functionF ∈ L2(C+) a Hilbert–
Schmidt operatorF̂ ′ (the related W- and S-functions areT †F andPF, respectively). But
contrary to the standard quantization scheme given by (17) this is not a one-to-one mapping
because all functions inL2

⊥(C+) are mapped onto the null operator. For the elements of
L2
S(C+) the mappingF → F̂ ′ is bijective but the operatorŝF ′ obtained this way coincide

with the operatorsF̂ obtained from standard quantization only for functionsF which are
both square integrable and strictly semiclassical (possibly an empty set). From a practical
point of view equation (66) constitutes a considerable simplification in calculating for a
given classical function the energy representation of the related operator: it is no longer
necessary to solve first the eigenvalue problem of the Hamiltonian; all that is needed is to
know how the classical function depends on the action and angle variables. However, to
obtain the operator one originally had in mind and which one would interpret in the same
way as the classical function, one has to take the validity of equations (62)–(64) for granted.
These conditions are too restrictive if one is ready to tolerate small errors in the calculation
of matrix elements and expectation values. In this case condition (61) may be weakened to

‖PF− FS‖2 < ε‖F‖2 (67)

whereε is a small positive constant. Using the triangle and Schwarz inequalities one can
show that (67) implies‖PF− F‖2 <

√
2ε‖F‖2, i.e. the difference between any two of the

functionsF, PF, andFS , is then small (in the sense ofL2). Functions for which (67) holds
true and the related operators will be called ’semiclassical’. For the matrix elements (67)
yields

|〈n′|F̂ |n′′〉 − 〈n′|F̂ ′|n′′〉| < h̄−1/2ε‖F‖2. (68)

This shows thatε should beo(h̄1/2) if semiclassical arguments are used to derive (67).
Although the set of semiclassical operators is by definition more comprehensive than

that of strictly semiclassical ones, it is not evident from these formal considerations whether
it contains any operators of physical interest, nor can (66) or (67) be verified for a given
operator without calculating, at least approximately, the eigenfunctions of the Hamiltonian.
It is only clear that infinite sets of different classical functions are mapped onto the same
operator when they are quantized according to (66), or according to the similar equation

〈n′|F̂ ′′|n′′〉 = Fn′−n′′((n′ + n′′ + 1)h̄/2). (69)

The belief that (66) and (69) are nevertheless useful formulae originates from the fact that
the latter is a well known formula for matrix elements which is claimed to yield good
approximations of the true matrix elements in the semiclassical energy range (small ¯h, high
quantum numbersn′ and n′′). In [4], where (69) was derived, it was claimed that the
difference between the true and the approximate matrix elements is of order ¯h2 and that
(69) makes sense for arbitrary operators. The foregoing considerations clearly show that
the second assertion cannot be true without restricting the class of considered operators.
A hint how this could be done is given in the introduction of [4] where, in contrast to
the otherwise claimed generality, it is said that the true matrix elements should be slowly
varying functions of the average quantum numbern̄; a similar statement is found in [7].
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There are indications that this requirement, supplemented with a condition on the variation
of the matrix elements for fixed average quantum numbern̄ and varying difference quantum
numberδn, might eventually be quantified to yield necessary and sufficient conditions for
semiclassical operators, which are more transparent than equations (64) and (65). In [4] it
was implicitly assumed in the derivation of (69) that theW -representative of the operator
admits a representation as power series in ¯h. That this condition is not necessary for (69)
to yield good approximations of the true matrix elements, can be seen from the density
operators for coherent states which appear in the second example discussed below.

In part II of this work we present a class of operators related to coherent states of high
energy which are good candidates for semiclassical operators because their matrix elements
are well approximated by (69); their matrix elements are indeed slowly varying functions
of n̄. In paper II we also solve a second problem related to formulae (69) and (66): letF̂

be an operator given by the kernelF(x ′, x ′′) andF(P,X) its W -representative calculated
according to (16). The corresponding functionF(I,Θ) is then uniquely fixed byF(P,X)
and the conventions used in the definition of2(P,X), as are the Fourier componentsFM(I).
This determines the right-hand side of both (66) and (69). However, the phases of the non-
diagonal matrix elements of the operator are not fixed byF̂ and the HamiltonianĤ alone
but depend on the phase conventions adopted for the eigenfunctions. Except for a common
phase factor there exists only one convention that will give matrix elements which, ifF̂ is
semiclassical, can be approximated by (66) or (69). It is shown in II that for symmetric
potentialsV (X) = V (−X) the proper phase conventions are the same as the ones usually
chosen for the eigenfunctions of the harmonic oscillator [9].

We close this section with two examples which illustrate the limitations of (66) and
(69) and show how differentW - andS-representatives of operators are in general. In both
cases we choosêH to be the harmonic oscillator Hamiltonian since this allows us to obtain
exact formulae for all quantities of interest. Although this system is special, semiclassical
arguments [8] and numerical calculations for anharmonic symmetric potentials indicate that
the conclusions drawn from the two examples are valid for a wider class of potentials.

The first example is the operator̂F = |n1〉〈n2| with n1 > n2. Its W -representative is
[10]

Wn1,n2(I,Θ) = 2(−1)n2

√
n2!

n1!

(
4I
h̄

)(n1−n2)/2

L(n1−n2)
n2

(
4I
h̄

)
exp

{
−2I
h̄
+ i(n1− n2)Θ

}
(70)

whereL(α)n (z) is the (generalized) Laguerre polynomial [11]. Note that forn1 = n2 = n,
(70) is the Wigner function of the eigenstate|n〉 while Sn,n is essentially what in literature is
called the (semi)classical limit of this function [8, 12]. A plot of these functions immediately
shows how different the two functions are and this is also seen in the failure of (66) and
(69). The true matrix elements are the Kronecker productsδn′,n1δn′′,n2 = δ2n̄,n1+n2δδn,n1−n2;
equation (69) gives instead

〈n′|F̂ ′′|n′′〉 = δδn,n1−n22(−1)n2

√
n2!

n1!
(4n̄+)δn/2L(δn)n2

(4n̄+) e−2n̄+ (71)

wheren̄+ = n̄+ 1
2. For fixedn1 andn2 andδn = n1− n2 the right-hand side oscillates for

n̄ < (n1+n2+1)/2, the lower boundary of̄n depending onδn; its amplitude is much smaller
than 1 and vanishes only forn̄� (n1+n2+1)/2. This behaviour persists for large quantum
numbersn1,2 and is obviously independent of the magnitude of ¯h. The same features are
found if (66) is used instead of (69). In this case it follows from (70) thatT̃n1,n2;n′,n′′ is
diagonal in the differencesn1−n2 andn′−n′′ but not in the sums of these quantum numbers.
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If only the dependence on the average quantum number is considered, the right-hand side of
equation (64) is similar to a convolution with an oscillating function. Such a transformation
drastically changes the original function, except if the latter is almost constant over many
oscillations. This is an indication that the matrix elements of semiclassical operators have
to be indeed slowly varying functions of the average quantum number.

The second example is the density operator of a ‘cat state’ which is a superposition of
the two coherent states|I0,Θ0〉 and |I0,Θ0+π〉,

F̂ = c(F̂+ + F̂− + F̂ 0) (72)

F̂+ = |I0,Θ0〉〈I0,Θ0| F̂− = |I0,Θ0+ π〉〈I0,Θ0+ π |
F̂ 0 = |I0,Θ0〉〈I0,Θ0+ π | + |I0,Θ0+ π〉〈I0,Θ0|. (73)

If F̂ were a mixture of the two coherent states the termF̂ 0 would be missing in (72).
The scalar products〈n|P,X〉 are well known (see, e.g., [9]); withP = −√2I sinΘ, X =√

2I cosΘ they read

〈n|I,Θ〉 = 1√
n!

(
I
h̄

)n/2
exp

{
− I

2h̄
− inΘ

}
= (−1)n〈n|I,Θ+ π〉. (74)

The matrix elements of the three operators (73) are therefore〈
n̄+ δn

2
|F̂+|n̄− δn

2

〉
= Q(n̄, δn) 1

0(n̄+ 1)

(
I0
h̄

)n̄
exp

{
− I0
h̄
− iδnΘ0

}
(75)

with

Q(n̄, δn) = 0(n̄+ 1)√
0(n̄+ (δn/2)+ 1)0(n̄− (δn/2)+ 1)

(76)

and 〈
n̄+ δn

2

∣∣∣∣F̂−∣∣∣∣n̄− δn2
〉
=
〈
n̄+ δn

2

∣∣∣∣F̂+∣∣∣∣n̄− δn2
〉
(−1)n

′+n′′ (77)〈
n̄+ δn

2

∣∣∣∣F̂ 0

∣∣∣∣n̄− δn2
〉
=
〈
n̄+ δn

2

∣∣∣∣F̂+∣∣∣∣n̄− δn2
〉
[(−1)n

′ + (−1)n
′′
]. (78)

Because of the factor 1+ (−1)n
′+n′′ + (−1)n

′ + (−1)n
′′

the matrix elements of (72) vanish
if n′ and n′′ are not both even numbers;〈n′|F̂ |n′′〉 is therefore rapidly changing when̄n
increases by1

2. For n̄� 1, |δn| � n̄ the Stirling formula gives

Q(n̄, δn) ≈ exp{−(δn)2/8n̄} (79)

and the approximation [13]∑
M

e−M
2/2x+iMα ≈ (2πx)1/2 exp{−2x sin2(α/2)} (80)

valid for x � 1, may be used to calculate the profiles for the operators (73). With

g0(n̄) = 1

0(n̄+ 1)

(
I0
h̄

)n̄
exp

{
− I0
h̄

}
g1(α) = (8πn̄)1/2 exp

{
− 8n̄ sin2

(
α

2

)}
(81)

one obtains

f+S(n̄h̄,Θ) ≈ g0(n̄)[g1(Θ−Θ0)+ (−1)2n̄g1(Θ−Θ0− π)] (82)

f−S(n̄h̄,Θ) ≈ g0(n̄)[g1(Θ−Θ0− π)+ (−1)2n̄g1(Θ−Θ0)] (83)

f0S(n̄h̄,Θ) ≈ γ (2n̄)(−1)n̄g0(n̄)[g1(Θ−Θ0− π/2)+ g1(Θ−Θ0+ π/2)]. (84)
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For the projection operatorŝF± non-vanishing profiles exist on all orbitsI = n̄h̄. On Bohr
orbits (n̄ integer) they have identical peaks atΘ = Θ0 andΘ = Θ0+ π which reach their
maximum height at̄n ≈ I0/h̄. On half-Bohr orbits (̄n half-integer) the peaks at inverse
positions in phase space have different signs. Therefore, iff+S is smeared out to form the
function F+S , a bell shaped peak emerges near(I0,Θ0) while the oscillatory contributions
around(I0,Θ0 + π) practically cancel each other. The resulting functions turn out to be
good approximations of the correspondingW -Functions, i.e. each of the two projection
operators is a semiclassical operator in the sense of (67). This property persists when they
are added to form the density operator of a mixture of the two coherent states, but is lost
when the operator̂F 0 is added. The functionF0S obtained from the profiles (84) assumes
its largest values near(I0,Θ0±π/2) but these values change their sign whenI is increased
by h̄. Note that because of the factorγ (2n̄) smearing with the step functions (43) does not
suffice to cancel these oscillations.

For the Weyl representatives one obtains from (16) and (12)

F±(P,X) = 2 exp

{
−1

h̄
[(P ∓ P0)

2+ (X ∓X0)
2]

}
(85)

F 0(P,X) = 4 exp

{
−1

h̄
[P 2+X2]

}
cos

{
−2

h̄
[P0X − PX0]

}
. (86)

It is already clear at this point that the central oscillating part (86) has no counterpart in the
S-function and that the oscillating parts of the latter, which are seen around(I0,Θ0±π/2),
are missing in theW -function. When action and angle are used for variables and parameters
the functions depending onΘ−Θ0 can be expanded according to [11]

exp(a cosα) =
∑
M

IM(a) eiMα cos(b sinβ) =
∑
M

J2M(b) e2iMβ. (87)

With n̄+ = n̄+ 1
2 this gives

F+δn(n̄+h̄) = Iδn(4
√
n̄+h̄I0) exp{−2I0/h̄− 2n̄+ − iδnΘ0} (88)

F−δn(n̄+h̄) = (−1)δnF+δn(n̄+h̄) (89)

F 0
δn(n̄+h̄) = γ (δn)4Jδn(4

√
n̄+h̄I0) exp{−2n̄+ − iδnΘ0} . (90)

For I0� h̄ and n̄� 1

F+(n̄+h̄,Θ) = 2 exp

{
− (
√

2n̄+ −
√

2I0/h̄)2− 8
√
n̄+h̄I0 sin2

(
Θ−Θ0

2

)}
≈ 2 exp

{
− 1

2n̄+
(n̄+−I0/h̄)2

}
(8πn̄+)−1/2

∑
M

exp

{
− M2

8n̄+
+iM(Θ−Θ0)

}
(91)

and the normal distribution centred atn̄+ = I0/h̄ approaches the Poisson distributiong0(n̄),
equation (81). Under these conditions (88) is a good approximation to (75) which shows
that F̂+ is semiclassical; the same holds forF̂− and for mixtures of the two coherent states.
On the other hand, this does not hold for the operator (72) since (90) and (78) are quite
different functions of the quantum numbersn′ andn′′.

These examples illustrate what was already evident from the general discussion, namely
that the following three statements are equivalent. (i) The matrix elements of the operator
are well approximated by (66) or (69). (ii) TheW - and theS-representative of the operator
are similar to each other (in the sense of square-integrable functions). (iii) The variables of
the S-representative may be interpreted as classical action and angle variables.
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5. Quantization of action and angle variables

The advantage of theS-formalism will become evident when the quantum evolution of the
system is taken into account. Before we turn to this point let us briefly discuss how this
formalism is related to a quantum theory that derives from a classical theory based on action
and angle variables. As there exists a close connection of this theory with the motion of a
point particle on the unit circle we discuss this problem first.

For this system the basic variables are the angleΘ and the related angular momentum
L. The phase space is the cylinder

C: −∞ < L <∞ − π 6 Θ 6 π. (92)

Here tooL,Θ andL,Θ+ 2π are considered as the same physical state. It is sufficient to
consider only Hamiltonians of the formH(L,Θ) = H(L) for which the angular momentum is
a conserved quantity. The evolution is then a uniform motion along the circleL = constant,
which contains the initial state, the angular velocity being given by dH(L)/dL > 0. If all
states withL < 0 are excluded andL is interpreted as an action variable one recovers the
classical mechanics of section 2.

One can quantize the system before the anti-clockwise motions are excluded. To this
end one considers square integrable functions〈θ |ψ〉 of the angular variableθ ∈ (−π, π)
(Hilbert spaceHcircle), and integral operators whose kernels〈θ ′|F̂ |θ ′′〉 are periodic func-
tions in both arguments. A natural choice for the operators which replace the functions
E(L,Θ) = exp{iΘ} andL(L,Θ) = L is

〈θ ′|Ê|θ ′′〉 = exp{iθ ′}δ(2π)(θ ′′ − θ ′) (93)

〈θ ′|L̂|θ ′′〉 = ih̄δ′(2π)(θ ′′ − θ ′) (94)

whereδ(2π) andδ′(2π) are the periodic continuations of the delta function and its derivative.
These basic operators satisfy the commutation relations

[L̂, ÊN ] = Nh̄ÊN (95)

for all integer values ofN . When these operators are applied to the eigenfunctions ofL̂,

〈θ |m〉 = (2π)−1/2 eimθ m integer (96)

one finds

L̂|m〉 = mh̄|m〉 ÊM |m〉 = |m+M〉. (97)

To fix the operators related to functionsF(L,Θ), whose Fourier componentsFM(L) are
power series inL, one has to supplement definitions (93) and (94) with an ordering rule,
for example

LK exp{iMΘ} → 1

2K
∑
N

(
K

N

)
L̂K−NÊML̂N =

(
L̂− h̄

2
M

)K
ÊM. (98)

This is equivalent to the quantization rule

〈m′|F̂ ′′|m′′〉 = Fm′−m′′((m′ +m′′)h̄/2) (99)

(cf (69)). There are several problems related to this quantization procedure. A minor one is
that for a general square-integrable functionFM(L) the value at positionsL = m̄h̄ need not
be defined. A more fundamental problem is that all functions which vanish on all circles
L = m̄h̄ are mapped onto the null operator. As a consequence, (99) relates the two different
exponentialsF1(L,Θ) = exp{−(i/h̄)φL} and F2(L,Θ) = exp{−(i/h̄)(φ + 2π)L} to the
same unitary operator̂F = exp{−(i/h̄)φL̂}. In contrast to standard quantum mechanics,
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where the relation between (Hilbert–Schmidt) operators and (square-integrable) phase space
functions is one-to-one, we are faced here with a serious dequantization problem, which can
be traced to the different topology of the configuration space, i.e. the boundary conditions
imposed on the analytic wavefunctions.

This fact also becomes evident when one tries to adapt the Wigner–Weyl formalism to a
quantum theory with periodic boundary conditions. Various attempts have been made in the
past to reformulate quantum mechanics in a phase space language when the configuration
space is a circle instead of the real line; for a critical survey see [14] (this paper also covers
the case where the configuration space consists ofN points, see also Hannay and Berry
[15]). It is a common feature of all these schemes that the ‘phase space’, the domain of
the functions which replace the operators, is not the cylinder (92) but a union of circles, for
example

C ′ = {(m̄h̄,Θ)|m̄ = . . . ,− 1
2, 0, 1

2, 1, . . . ;−π 6 Θ 6 π}. (100)

Note that in (100) the values assumed by the ‘momentum variable’ are not only the
eigenvaluesmh̄ of the momentum operator̂L, but also the half-integer multiples of ¯h

(for systems with finite configuration space this effect occurs also for the ‘position variable’
[14, 15]). It has been argued in [14] that the closest analogy to the usual Wigner–Weyl
formalism is obtained when the phase space functions are related to the operators according
to the rule

fS(m̄h̄,Θ) =
∫ π

−π
dθ exp{im̄(2Θ− 2θ)}〈θ |F̂ |2Θ− θ〉

=
∑
M

γ (2m̄+M) exp{iMΘ}〈m̄+ 1
2M|F̂ |m̄− 1

2M〉. (101)

It follows from this definition that the profiles (101) satisfy the symmetry relation (41) and
that the matrix elements of̂F are recovered from them according to

fSM(m̄h̄) = γ (2m̄+M)〈m̄+ 1
2M|F̂ |m̄− 1

2M〉 (102)

(cf (38)); the only difference to (38) and (41) is thatm̄ can also assume negative values.
The analogy to theS-formalism of section 3 can be further extended if the profiles (101)
are smeared out and merged into a function defined on the classical phase space (92),

FS(L,Θ) =
∑
m̄

Cm̄h̄(L)fS(m̄h̄,Θ). (103)

From this we obtain, in analogy to (53),h〈〈F̂ , Ĝ〉〉 = 〈FS,GS〉2 where the subscript 2 refers
to the Hilbert spaceL2(C). As in section 4 this establishes an isomorphism betweenL2

S(C),
a proper subspace ofL2(C), and the Hilbert–Schmidt operators. However, it does not tell us
how to quantize phase space functions which, like the ones usually met in classical physics,
are not linear combinations of the functions

Sm′,m′′(L,Θ) = Cm̄h̄(L) exp{iδmΘ}. (104)

One way to quantize these functions would be to ignore their components orthogonal to
L2
S(C),

〈m′|F̂ ′|m′′〉 = 1

h
〈Sm′,m′′ ,F〉2 = 1

h̄

∫ (m′+m′′+1)h̄/2

(m′+m′′−1)h̄/2
dL Fm′−m′′(L). (105)

This quantization rule is qualitatively similar to rule (99), because it also eliminates in
all classical functions those oscillations inL which have a wavelength ¯h or less. But
quantitatively there is a difference. Consider, for example, the functionsFK(L,Θ) =
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LK exp(iMΘ). In both schemes they are mapped onto matrices, whose elements vanish
everywhere except along the linem′ = m′′ +M. However, form′ + m′′ = 2m̄ the non-
vanishing element obtained according to (99) ism̄Kh̄K , whereas it is(K + 1)−1[(m̄ +
1
2)
K+1 − (m̄ − 1

2)
K+1]h̄K , if quantization rule (105) is employed. The matrices obtained

for the functionsF(L,Θ) = L and F±(L,Θ) = exp(±iΘ) coincide in both quantization
schemes, but the ordering rule analogous to (98) is

LK exp{iMΘ} → 1

K + 1

[(
L̂− h̄

2
(M − 1)

)K+1

−
(
L̂− h̄

2
(M + 1)

)K+1 ]
ÊM. (106)

If both quantum numbersm′ andm′′ are of order ¯h−1, the difference between the matrix
elements obtained from the two quantization rules is of order ¯h2. Which of them is the
‘correct’ one and which the ‘semiclassical approximation’ is still a matter of convention.

If we want to proceed in analogy to the Weyl quantization/dequantization scheme and
establish a one-to-one correspondence between Hilbert–Schmidt operators in the Hilbert
space of square-integrable functions defined on the configuration space (here the interval
(−π,+π)) and square-integrable functions defined on the classical phase space (here the
cylinder (92)), we have to choose

F(L,Θ) =
∑
m′,m′′
〈m′|F̂ ′|m′′〉Sm′,m′′(L,Θ) (107)

as the dequantization rule (mapping of operators onto functions) and (105) as the inverse
quantization rule. Since the value of the Fourier componentsFM(L) of the functions (107)
is well defined at all positionsL = m̄h̄, for which 2m̄ + M is even, equation (99) may
be considered as a formula which yields approximate matrix elements of the operatorF̂ ′,
which is related to the functionF ∈ L2

S(C) by (105). (The difficulty one would encounter
when (99) is chosen as the quantization rule is that dequantization is ambiguous and the
status of (105) unclear.)

Two more steps are needed to establish a relation with the discussion of the previous
section. First we reduce the set of admissible operators and functions by postulating that

〈m′|F̂ ′|m′′〉 = 1

h
〈Sm′,m′′ ,F〉2 = 0 for m′ < 0 or/andm′′ < 0. (108)

For functionsF ∈ L2
S(C) this condition implies

FM(L) = 0 for L < (|M| − 1)h̄/2 (109)

such that all phase space functions of interest vanish on the semicylinderL < −h̄/2. If we
now introduce the variable

I = L + h̄
2

(110)

instead ofL we see that all admissible phase space functions vanish forI < 0 and the
space spanned by these functions becomes isomorphic to the spaceL2

S(C+) considered in
section 3.

The situation may now be summarized as follows: The naive quantization of functions
of the classical action and angle variables according to equations (93)–(99) and (110) may
be seen as an approximation to the quantization scheme given by (105) and (110). The
central question is, whether the matrix assigned to the function by these equations is the
same as (or at least similar to) the one, which is obtained according to the following route.
(i) ExpressI andΘ variables as functions of the original position and momentum variables.
(ii) Quantize the function ofP andX obtained by this substitution of variables according
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to the Weyl scheme. (iii) Solve the eigenvalue problem of the Hamilton operatorĤ , fix the
phases of the eigenfunctions, and calculate the matrix elements.

The answer to this question can be deduced from the following diagram; here all
functions are functions of the classical action and angle variables and symbols labelled
by double indices represent sets of functions or the elements of a matrix. The operators on
the left-hand side are operators in the usual Hilbert spaceHline (square-integrable functions
of x ∈ (−∞,+∞)), while those on the right-hand side are operators in the Hilbert space
Hcircle (square-integrable functions ofθ ∈ (−π,+π)):

|n′〉〈n′′| F̂

66
??

FWn′,n′′

@@ ��

〈n′|F̂ |n′′〉

�� @@

Sn′,n′′ FS

-P
F′ Sm′,m′′

〈m′|F̂ ′|m′′〉
@@ ��

|m′〉〈m′′|F̂ ′

6 6
? ?

On the left-hand side the one-to-one relation between the functionF and the operator
F̂ is meant to be the Weyl correspondence. It requires explicit knowledge of the functions
I (P,X) and2(P,X) and evaluation of an integral of the form (16); information on the
operator related to the classical Hamiltonian is not needed in this quantization procedure.
The functionsWn′,n′′(I,Θ) are obtained as follows. (i) The functionH(P,X) has to be
quantized according to the Weyl scheme. (ii) The eigenfunctions of the operatorĤ obtained
in this way have to be determined inx-representation and their phases have to be fixed by
some convention. (These two steps may be approximated by constructing proper WKB
wavefunctions, see paper II.) (iii) These (approximate) eigenfunctions have then to be used
in (16) to obtain (approximations to) the functionsWn′,n′′(P,X). (iv) Finally, the variables
P andX have to be substituted byP(I,Θ) and X(I,Θ). If the functionsWn′,n′′ and the
W -representativeF are known, the matrix elements〈n′|F̂ |n′′〉 are obtained by integration
(equation (48)). Likewise, if the matrix elements and the functionsWn′,n′′ are known,F
is determined by the sum (47). In principle this relation is convertible, i.e. if an infinite
set of functionsFi and the corresponding matrices are known, the functionsWn′,n′′ could
be determined as solutions of linear equations of the form (47). Because any two sets
fix the third one, no arrows were used to characterize the relation between generalW -
functions, theW -representatives of the operators|n′〉〈n′′|, and matrix elements. A similar
triangular relation holds forS-representatives of general operators,S-representatives of the
operators|n′〉〈n′′|, and matrix elements; the only difference is, that the functionsSn′,n′′ are
not obtained through the solution of an eigenvalue problem, but are directly given by the
defining equation (49) (see also (43)).

The projection operatorP in the centre of the diagram is the one introduced at the
end of section 3 andF′ = PF. The ‘smoothing’F → F′ assigns to each functionF of



Semiclassical mechanics of periodic motion: I 2215

the action and angle variable, another function with the same domainC+. With (110) this
function becomes a function ofL,Θ and by (109) its domain may be extended to the full
cylinder C. The scalar products of this function, also denoted byF′ for simplicity, with
the functionsSm′,m′′ defined in (104) yield then a matrix with elements〈m′|F̂ ′|m′′〉; these
elements vanish when one of the two indices becomes negative. To each matrix of this form
there corresponds an operator in the Hilbert spaceHcircle. Its kernel follows from (107) and
the fact, that the kernels of the operators|m′〉〈m′′| related to the functionsSm′,m′′ are given
by

〈θ ′|m′〉〈m′′|θ ′′〉 = 1

2π
ei(m′θ ′−m′′θ ′′) (111)

(cf (96)). Note that the relation between matrices of this special form, functionsSm′,m′′
with m′, m′′ > 0, and functionsF′ is exactly the same as the triangular relation between the
matrices with elements〈n′|F̂ |n′′〉, functionsSn′,n′′ , and functionsFS . It is therefore evident,
that the non-vanishing submatrix ofF̂ ′ coincides with the energy representation ofF̂ if, and
only if, F′ = PF = FS . Since‖FS‖ = ‖F‖ by definition andP is a projection operator,
the necessary and sufficient condition for the coincidence of the two matrices is therefore
FS = PF = F.

So far, this is only a repetition of the definition of a strictly semiclassical operator.
Additional insight can be gained from the comparison of quantization procedures in the first
part of this section. If (i) the operator is (strictly) semiclassical; (ii) one is only interested
in matrix elements for states of high energy; and (iii) one is ready to tolerate deviations
from the true matrix elements which are small compared to their average magnitude, then
these approximate elements can also be calculated by (a) quantizing the ‘classical’ function
according to the substitution

F(I,Θ)→ F
(
− i

h̄

[
∂

∂θ
+ 1

2

]
, θ

)
(112)

(b) adopting the ordering rule (98) and (c) using the exponentials (96) as eigenfunctions of
the Hamilton operator. Up to the constant term in the definition of the action operator, which
is a technical detail, this is exactly the semiclassical Hilbert space formalism introduced by
Marcus [16] and later on applied to a number of physical problems. Its success indicates
that there exist many operators of physical interest, which are ‘semiclassical’ in the sense of
section 4. This is well illustrated by an example: let the system be the harmonic oscillator
with classical HamiltonianH(P,X) = (1/2)(P 2+X2) = I (P,X) and consider the function
F(P,X) = (1/2)(X+ iP)2. Under Weyl quantization this function is mapped ontoF̂ = Â2

where Â is the usual destruction operator. The only non-vanishing matrix elements are
therefore of the form〈n− 1|F̂ |n+ 1〉; they have modulus ¯h

√
n(n+ 1) and are real, if the

standard phase convention is adapted for the oscillator eigenfunctions [9]. Quantization of
the corresponding function in action and angle variables,F(I,Θ) = I exp(−2iΘ), yields the
same selection rules for the matrix elements and the non-vanishing elements are also real,
if the eigenfunctions (96) withm′ = n− 1, m′′ = n+ 1, n > 0, are used. Their magnitude
is h̄(n− 1

2) in Marcus’ quantum theory (quantization rule (112) plus ordering rule (98)) and
equal toh̄(2/3)[(n+ 1)3/2− n3/2] if (106) is used.

Examples like this exhibit quite clearly under which conditions a quantum theory based
on the Hilbert spaceHcircle may lead to similar results as the standard quantum mechanics
based onHline. However, they do not reveal the fundamental difficulty in dequantizing the
operators ofHcircle (or those of the subspace spanned by the functions (96) withm > 0).
This problem is related to the fact that, here too, two variables may be found, which label
the elements of an operator basis inHcircle [14]; however, contrary to what one is used
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to from the Weyl formalism forHline, the ‘mock phase space’ spanned by these variables
does not coincide with the classical phase space (cylinder or semicylinder) but only with a
discrete subset thereof. This leaves an ambiguity, or freedom, when the domain of functions
is extended; hence the physical meaning of these ‘classical’ functions has to be inferred
from that of the related operators inHcircle. The physical meaning of these operators is
in turn determined by comparing their matrix representation with respect to the basis (96)
with the energy representation of operators inHline: if the matrix of the operator̂F in Hline

coincides with the matrix of the operatorF̂ ′1 in Hcircle, or the two are at least similar to each
other, the meaning of̂F is transfered toF̂ ′1. Finally, the physical meaning of the operatorF̂
derives from the relatedW -representative. Physical interpretation therefore proceeds along
the lineF → F̂ → F̂ ′1→ F′1; this is compatible with the routeF → F→ PF = F′ if, and
only if, F̂ is a semiclassical operator (F′1 = F′).

6. Evolution in time

As already stated, the advantage of usingS-functions instead ofW -functions only becomes
evident when the quantum mechanical evolution of the system is considered. We first
discuss how this evolution and two approximations to it are seen in theS-, W -, andQP -
formalism. Next we consider the implications of the assumption that the HamiltonianĤ

is a semiclassical operator, i.e. that the numbersH([n + 1
2]h̄), n = 0, 1, 2, . . . , are good

approximations to the true eigenvalues〈n|Ĥ |n〉 = E(n). Finally, we assume that not only
the Hamiltonian but also the observable and the density operator are, at a given instant,
semiclassical operators.

The evolution of the quantum system may be described either by a continuous change
of the observables or by the corresponding change of the state symbol. In analogy to the
classical evolution, equation (10), we choose the second option,

〈n′|Ẑt |n′′〉 = 〈n′|Ẑ0|n′′〉 exp{−i8(n′, n′′)t} (113)

8(n′, n′′) = (1/h̄)[E(n′)− E(n′′)] = �(n̄, δn). (114)

The eigenvalues ofĤ are of interest only in a certain energy range which is fixed by the
initial state Ẑ0. If in this range the spectrum can be approximated by a slowly varying
smooth functionE(ν) the phases of the exponentials in (113) become approximately

�(n̄,M) = (1/h̄)[E(n̄+M/2)− E(n̄−M/2)] ≈ (1/h̄)E′(n̄)M. (115)

In a cruder approximation

E(n) ≈ E(n0)+ E′(n0)(n− n0)+ 1
2E
′′(n0)(n− n0)

2 (116)

where the reference quantum numbern0 is fixed by the average energy of the considered
state, and

�(n̄,M) ≈ (1/h̄)[E′(n0)+ E′′(n0)(n̄− n0)]M. (117)

Depending on the phase space formalism that is used, the function which represents the
state of the system is

ZS(I,Θ) =
∑
n̄

ZSn̄(I,Θ)

ZSn̄(I,Θ) =
∑
δn

(n̄)〈n̄+ 1
2δn|Ẑ|n̄− 1

2δn〉Sn̄+δn/2,n̄−δn/2(I,Θ) (118)

Z(I,Θ) =
∑
n̄

Zn̄(I,Θ)
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Zn̄(I,Θ) =
∑
δn

(n̄)〈n̄+ 1
2δn|Ẑ|n̄− 1

2δn〉Wn̄+δn/2,n̄−δn/2(I,Θ) (119)

or

ZQ(I,Θ) =
∑
n̄

ZQn̄ (I,Θ)

ZQn̄ (I,Θ) =
∑
δn

(n̄)〈n̄+ 1
2δn|Ẑ|n̄− 1

2δn〉Qn̄+δn/2,n̄−δn/2(I,Θ) (120)

where

Qn′,n′′(I,Θ) = 〈I,Θ|n′〉〈n′′|I,Θ〉. (121)

As time proceeds each of the functions which represent the operators|n′〉〈n′′| is multiplied
by a phase factor exp{−i8(n′, n′′)t}. Therefore, the real and imaginary parts of these
functions behave like standing waves in phase space, each of which oscillates with its
own characteristic frequency. The state function is a superposition of these waves with
time-independent coefficients and its form at a given instant results from the interference
of all these waves. The same holds for the constituentsZSn̄,t , Zn̄,t , and ZQn̄,t which evolve
independently of each other because of (34)–(36). Another consequence of this method of
performing the double summation is that all three functions satisfy the symmetry relation
Fn̄(I,Θ) = (−1)2n̄Fn̄(I,Θ+π). When the phase factor is approximated according to (115)
or (117) each of these functions evolves, either exactly or approximately, according to

Fn̄,t (I,Θ) = Fn̄,0(I,Θ− ω(n̄)t) (122)

the angular frequency depending on the approximation employed

ω1(n̄) = (1/h̄)E′(n̄) ω2(n̄) = (1/h̄)[E′(n0)+ E′′(n0)(n̄− n0)]. (123)

That for ZSn̄,t the evolution reduces to a translation inΘ follows directly from the fact
that the functionsSn′,n′′ are proportional to exp{i(n′ − n′′)Θ}. As is shown in paper II
the same factor is found in the asymptotic form ofQn′,n′′ valid for high quantum numbers
n′, n′′. From this and the asymptotic form of the smoothing kernel (23), obtained in II for
large values ofH(P,X) andH(P ′, X′), it may be further concluded thatWn′,n′′ is also
asymptotically proportional to exp{i(n′ − n′′)Θ}; this result may also directly derived from
(16) if WKB wavefunctions are used in the kernel〈x ′|n′〉〈n′′|x ′′〉 = ψn′(x ′)ψn′′(x ′′)∗. For
the approximations (115) or (117) the evolution of all three functions,ZSn̄,t , Zn̄,t , andZQn̄,t ,
is therefore simply a ‘rotation’, the shift inΘ depending on the average quantum number
n̄. The total state representative at a given instant is obtained by adding all contributions
from the energetically relevant average quantum numbersn̄. It is the interference of these
contributions where the essential difference between the three schemes shows up. For the
S-formalism the functionZSn̄,t interferes only with its nearest neighbours which both have
a different parity; therefore, the interaction of these functions is easily perceived. For the
QP -formalism the situation is similar since for large values ofn̄ the I-dependence of the
function ZQn̄,t can be approximated by a Gaussian centred at the orbitI = n̄h̄. Put in a
different way, these functions may be obtained by smoothing the functionsZSn̄,t , which
are extremely localized inI, with respect to this variable. The most complex interference
patterns are seen in theW -formalism because each of the functionsZn̄,t , which rotate with
different angular velocities, has an oscillatory structure within the regionI < n̄h̄, andZ is
obtained as superposition of a large number of rapidly oscillating functions. This is just
another way of seeing the inherent complexity of the evolution of Wigner functions; if the
quantum Liouville equation [3] is used to describe it, it is the partial derivatives of high
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order which transform an initially smooth function within short time into a function with
rich oscillatory structure.

It is clear from these considerations that the most transparent picture of the evolution
related to the approximations (115) or (117) is obtained when the profiles

zSt (n̄h̄,Θ) = zS0(n̄h̄,Θ− ω(n̄)t) (124)

are considered. These functions, forming the skeleton of the functionsZSn̄ andZQn̄ , contain
all the information about the state at timet but do not interfere with each other since they
are strictly bounded to the corresponding Bohr or half-Bohr orbits.

The difference between the two approximations (115) and (117) is seen at time

T0 = h/E′′(n0) (125)

and multiples thereof. It follows from (124) and (125), the symmetry relation (41), and
(2n̄)2− 2n̄ = 2n̄(2n̄− 1) ≡ 0 (modulo 2), that

zST0
(n̄h̄,Θ) = zS0(n̄h̄,Θ−Θ0− 2n̄π) = zS0(n̄h̄,Θ−Θ0− π) (126)

if approximation (117) is employed. In this case all profiles and hence the original state
is completely restored after a periodT0, except for a shift inΘ by an amountΘ0 + π ,
Θ0 = 2πE′(n0)/E

′′(n0); these ‘full revivals’ of the original state are seen at all integer
multiples of T0. At rational multiples ofT0 ‘fractional revivals’ can be observed where
adjacent profiles are shifted against each other by rational multiples ofπ , thereby forming
superpositions of several copies of the original state which are shifted against each other
along the classical orbitI = n0h̄ and are equidistant inΘ. This effect was first explained
within standard quantum mechanics by Averbukh and Perelman [17]; an explanation in
terms of the smoothed profilesZQn̄ was given in [18]. If the more accurate approximation
(115) is used instead of (117) fractional and full revivals are still seen in the expectation
values but no longer occur in perfect form; with increasing time they are more and more
blurred by effects which have their origin in the neglected higher-order terms of the Taylor
expansion (116). After a while the origin of the pattern, according to which amplitude and
frequency of an oscillating expectation value change in time, can no longer be recognized.
The period, where time-dependent expectation values are in excellent agreement with the
exact result, is by far longer if approximation (115) is used instead of (117); however, this
approximation is also bound to fail in the long run when the higher-order terms neglected
in (115) become important. For these extremely long time intervals the exact frequencies
(114) have to be used for each term that contributes to a profile.

If Ĥ is a semiclassical operator, then

E(n) = 〈n|Ĥ |n〉
≈ 1

h̄

∫ (n+1)h̄

nh̄

dI H(I) (127)

≈ H([n+ 1
2]h̄) (128)

where (127) expresses what the term ‘semiclassical’ means for the Hamiltonian and (128)
is the Maslov quantization condition. For both conditions to be essentially equivalent, the
derivatives dkH(I)/dIk, k = 2, 3, 4, . . ., have to be small compared to the valuesH(I) in
the energy range under consideration. If (128) is a good approximation at high energies,
as it is generally believed, one could think of shifting the integration range in (127) by
a small amount such that agreement between (128) and (127) becomes optimal in the
considered energy range. Such a shift would imply a slightly different definition of the step
functionsCy(x), equation (43), and hence of theS-representatives of the operators. These
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are technical details which can become of interest in explicit calculations of expectation
values, but as they do not affect the general line of our arguments we do not pursue this
point here.

Accepting the functionH([ν + 1
2]h̄) as the functionE(ν) whose values at the points

ν = n approximate the eigenvaluesE(n) we have

ω1(n̄) ≈ ω([n̄+ 1
2]h̄) (129)

and

ω2(n̄) ≈ ω(I0)+ ω′(I0)([n̄+ 1
2]h̄− I0) (130)

whereω(I) is the classical angular velocity (10) andI0 = (n0+ 1
2)h̄. If in the relevant range

of the action

(h̄/2)|ω′(I)| � ω(I) (131)

(as is the case for anharmonic oscillators at sufficiently high energies) then (129) may be
replaced by the classical angular velocity along the (half-)Bohr orbitI = n̄h̄ and (130)
becomes the corresponding classical velocity, when the HamiltonianH(I) is approximated
by a polynomial of second order. The evolution of profiles is then determined by classical
mechanics, except that the Hamiltonian flow is restricted to a discrete set of orbits and
the functions transported along these orbits have non-classical symmetry properties. If the
considered time interval is so short that the relative shift of adjacent profileszSt (n̄h̄,Θ)
remains very small for allt ∈ (0, T ), the interference of the smeared out profilesZSn̄,t (I,Θ)
results in functions of similar form. The evolution is then seen in a shift of the minima and
maxima of the original functionZS0 and a distortion in the neighbourhood of these extrema;
this is in agreement with the classical evolution ofZS0, no matter whether or not this function
admits a classical interpretation. The same holds for the related Husimi functionZQ0 , which
is non-negative by construction, and seems to evolve within the short time interval(0, T )
according to the classical Liouville equation. This is also true for the the Wigner function
Z0, but in general only for a much shorter time interval after which already existing rapidly
oscillating parts ofZ0 decay and new ones emerge.

Finally, let us assume that not only the Hamilton operator is a semiclassical operator
but so are the observablêA and the density operator̂Zt at a certain instantt0; this instant
may be chosen as a reference value for the evolution (t0 = 0). Regardless of whether the
correspondingW -functions admit a classical interpretation (as, e.g. the Wigner function of
a coherent state) or not (as the Wigner function of a cat state) the definition of semiclassical
operators implies that the twoW -functions may be interpreted asS-functions. The evolution
of the expectation value may then be calculated in theS-formalism, i.e. it can be deduced
from the evolution of the profiles contained inZS0 ≈ Z0 (cf equations (36)–(42)),

zS0(n̄h̄,Θ) ≈ 1
2[Z0(n̄h̄,Θ)+ (−1)2n̄Z0(n̄h̄,Θ+ π)]. (132)

These profiles are then propagated according to classical mechanics. To calculate the
expectation value for the propagated profiles one can either reconstruct the functionZSt
by means of (42) or calculate the profilesaS(n̄h̄,Θ) from A(I,Θ) analogous to (132). If
A and Z0 admit a classical interpretation all ingredients of this approximation stem from
classical mechanics, except for the magnitude of ¯h which fixes the set of classical orbits to
which the Hamiltonian flow is restricted. Examples of time-dependent expectation values
calculated in this way were presented in [19] and compared to their exact quantum evolution.
Excellent agreement was found over time intervals of lengthT ≈ 2T0, during which two
(imperfect) full revivals of the initial coherent state and several (increasingly imperfect)
fractional ones could be clearly recognized.
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We close this section with a warning: the approximation described above will yield
good results only if both the observable and the density operator are semiclassical. It is
not sufficient if only one of them has this property at a given instant. If, for example, the
initial Wigner functionZ0 is a semiclassical phase space function, thenZ0 ≈ ZS0 = PZS0 and
A, theW -representative of the observable, could be replaced by its projectionPA without
changing the magnitude of the expectation value. In other words, the rapid oscillations ofA,
which would be smoothed by the projectionP , do not contribute to the expectation value.
However, this holds only fort = 0 if the observable is not semiclassical (A 6≈ AS = PAS).
Even if Zt ≈ ZSt at t = 0, the functionsZt and ZSt will strongly deviate from each other
after a short time, as can be seen from the evolution of a coherent state in an anharmonic
potential, and there is therefore no more reason to considerPA asS-representative of the
observable.

7. Conclusions

In sections 3 and 6 of this paper we presented a scheme of how to calculate time-
dependent quantum mechanical expectation values from phase space functions, which are
either classical functions or can be obtained from the matrices of the operators in energy
representation. In the first case Planck’s constant is the only quantum mechanical ingredient
of the scheme, all other objects deriving from classical (statistical) mechanics. The evolution
in time depends on the employed approximation of the spectrum of the Hamiltonian, but
is in any case non-classical and leads to well known interference effects (e.g. revivals).
The scheme covers part of a full quantum mechanical description of classically periodic
motion in one dimension and is based on several approximations, which are not related and
can be employed independently of each other (the approximation of the spectrum of the
Hamiltonian, approximations of matrix elements of the observable and the density operator).

The starting point is the so-calledS-formalism introduced in section 3. This is a new
phase space reformulation of quantum mechanics, which is similar to the Wigner–Weyl
formalism but makes use of ‘action’ and ‘angle’ variables instead of the usual momentum
and position variables. In fact the two variables, which constitute the mock phase space in
theS-formalism, can be identified with the action and angle variables of classical mechanics
only if the set of considered operators is sufficiently restricted (‘semiclassical operators’).
For operators not belonging to this set the similarity of the general form of the expectation
values in theS-formalism and in classical statistical mechanics is purely formal and there is
no obvious relation between the phase space functions representing the same physical objects
(observables, states) in the two theories. The necessary and sufficient condition that theS-
symbol of an operator has to satisfy, such that it admits a classical interpretation, is that the
function is similar to (or even coincides with) the corresponding Weyl representative, when
the latter is expressed in terms of the classical action and angle variables. This is equivalent
to the postulate that the matrix elements of the related operator in energy representation,
where rows and columns refer to the eigenstates of the Hamiltonian, are well approximated
by formula (66). In this relation each matrix element is identified with one of the Fourier
components of theW -function, averaged in the action variable over an interval of width
h̄, which is centred at a position given by the average of the two quantum numbers. A
very similar formula, equation (69), is often used in semiclassical calculations to obtain
approximate matrix elements. It is pointed out that this relation, the so-called ‘Heisenberg
correspondence principle’, is not valid in general and can give qualitatively wrong results
even at high energies where equation (69) is believed to be asymptotically correct for all
operators (see, e.g., [4]). To illustrate this point we discussed in section 4 two examples
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where (69) fails to give a meaningful result. It is also emphasized that both (66) and (69)
imply a phase convention for the eigenfunctions of the Hamiltonian, a problem which is
solved in paper II of this series.

In section 5 we discussed how the Heisenberg correspondence principle and the
S-formalism is related to the following approach. First the classical problem is reformulated
in terms of action and angle variables and then the new dynamical system is quantized in a
naive way, where the action variable is treated like an angular momentum conjugate to the
angle and anti-clockwise rotations are excluded after quantization. Formulated as Hilbert
space formalism this quantum theory was first introduced by Marcus [16] and is now a
well established semiclassical approximation. The corresponding phase space formalism,
the S-formalism of the present paper with the variables interpreted as classical action and
angle, seems to be hardly known although it has been used implicitly in the past in several
specific examples (see [14] for references). Our approach is similar in spirit to the phase
space formalism introduced by Berman and Kolovsky [20, 21] but it has to be emphasized
that none of the functions introduced there corresponds to any of the functions defined
in this paper. This is most easily seen from the fact that their phase space is of the
form {0, h̄, 2h̄, . . .} × (−π,+π); in addition, their phase space functions do not satisfy the
symmetry relation (41). The lack of these non-classical constraints on the phase space
functions in [21] is related to the absence of half-Bohr orbits in their formalism; in the
S-formalism both these features are a consequence of the algorithm used to calculate the
trace of the product of two matrices (see section 3).

The considerations of sections 4 and 5 may also be seen as a contribution to a discussion
started by Dirac 70 years ago [22]. It is centred around the following questions: (i) Which
of the many canonically equivalent forms of classical mechanics should be quantized to
obtain the ‘true’ quantum mechanics? (ii) What are the ‘right’ quantization rules for a
given set of canonically conjugate classical variables? (iii) What is the counterpart of a
nonlinear canonical transformation in quantum mechanics?

For the harmonic oscillator, in particular, these questions have been extensively
discussed in the past, see [23–26] and the references therein. One reason for studying this
system is the fact that harmonic oscillators allow for an exact treatment, both in classical
and in quantum mechanics; another reason is the importance of these systems in quantum
optics. The problem of which operatorF̂ in Hline should be assigned to a given phase space
function F(I,Θ), has been recently discussed at length and with full mathematical rigor in
[25, 26] for a number of examples. Since the Hilbert space is the usual one and the function
F(P,X) can be explicitly obtained fromF(I,Θ), the only question left is which ordering
scheme one should use in the series expansion ofF(P,X). Royer [26] studied functions
with the asymptotic behaviour

F(I,Θ)→ f(Θ) for I→∞ h̄ = constant (133)

i.e. functions whose variation inI becomes negligible for high energiesH = I. Using the
explicit form of the overlap integrals〈I,Θ|I′,Θ′〉, equation (13) withP = −√2I sinΘ, X =√

2I cosΘ, and 〈n|I,Θ〉 he was able to show that the expectation values of an operator
related to (133) for a coherent state|I,Θ〉 approachesf(Θ) for I → ∞, no matter which
ordering rule is used in the definition of̂F . He also showed that〈n′|F̂ |n′′〉 → fn′−n′′ for
n̄ → ∞, δn = constant, when the functionF(I,Θ) in (133) is the Weyl symbol of the
operator. This means thatW -functions with asymptotic behaviour (133) are semiclassical.
These are asymptotic results; for large but finite energies the difference in the operators
resulting from different ordering rules can be seen in matrix elements and expectation
values, which should give rise to experimentally observable effects [25].
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Ordering problems in the quantization of functionsF(I,Θ) with I = 1
2(P

2+X2),Θ =
arctan(−P/X), when the Hilbert space isHline, are also of interest in a different context.
Classical systems which exhibit soft chaos can be approximated by integrable systems, if
the energy is well below a critical value. The construction of approximate Hamiltonians,
known as Birkhoff–Gustavson normal forms, makes use of action and angle coordinates of a
many-dimensional harmonic oscillator, which is related to an approximation of the original
Hamiltonian in the neighbourhood of a stable point (potential minimum). Every Birkhoff–
Gustavson normal form is a function of the formF(I1, I2, . . . ,Θ1,Θ2, . . .) where the indices
refer to the degrees of the oscillator. One can express the action and angle coordinates of the
normal form according toIi = 1

2(P
2
i + X2

i ),Θi = arctan(−Pi/Xi), map the new function
by Weyl’s quantization rule onto an operator inH = Hline ⊗ Hline ⊗ . . ., and solve the
eigenvalue problem of this operator, hoping to get by this procedure an approximation of
the spectrum of the original Hamiltonian (in the relevant energy region). However, the
first two steps (change of variables, Weyl ordering of terms) become extremely tedious
when normal forms of higher order are considered. For this reason Robnik [27] proposed
an alternative (‘algebraic’) quantization scheme which differs from Weyl’s in the ordering
rules (but not in the Hilbert space) and makes use of the action and angle coordinates of
the oscillators. When the normal form is mapped onto an operator inHcircle⊗Hcircle⊗ . . .,
a possibility briefly mentioned in [28], one would face similar ordering problems, as can
be seen from the discussion in section 5. (we note in passing that for the non-resonant
case Robnik’s rule coincides with the quantization rule defined by (110) and (99)). From
section 5 one might conjecture that a change of the underlying Hilbert space and/or the
employed ordering rules has little effect on the form of the spectrum at high energies
(see also [27, 28]). However, small differences of the spectra at high energies are of little
interest here, because the normal form approximates the original Hamiltonian only at low
energies.

In [27] eigenvalues obtained by Robnik’s algebraic quantization were compared to the
the eigenvalues of the Hamilton operatorĤ 0, related to the original classical Hamiltonian
H 0(P 0

i , X
0
i ) by the Weyl correspondence. Approximate eigenvalues of this system, either

obtained by second-order perturbation theory or by numerical diagonalization, were found to
be in excellent agreement with those obtained from Robnik’s scheme. This is a remarkable
result, not only because of the ordering problems mentioned above, but even more for
the following fact: the momentum and position variables related to the action and angle
variables of the normal form byPi = −

√
2Ii sinΘi , Xi =

√
2Ii cosΘi are not identical to

the corresponding variablesP 0
i , X

0
i occurring in the original Hamiltonian, but related to them

by a nonlinear canonical transformation. In contrast to linear canonical transformations,
a nonlinear one cannot be represented by a unitary operator in the original Hilbert space
H0 = Hline⊗Hline⊗· · ·, hence the Hilbert space used in the (Weyl or algebraic) quantization
of the normal form is only isomorphic to the original one but not identical (the same
oscillator eigenfunction has a different physical meaning in the two spaces). The agreement
of eigenvalues found in [27] shows that the original Hamiltonian is obviously ‘robust’ in the
following sense: whether it is directly quantized (in the standard way) or after a nonlinear
canonical transformation (in the same or a similar way) has hardly an influence on the
eigenvalues. This property is analogous to the notion ‘semiclassical’ introduced in the
present paper to characterize a certain set of phase space functions: whether the matrix
elements in energy representation of the Weyl-related operators are calculated directly,
or are derived from a (nonlinear) canonical transformation to action and angle variables
(F(P,X) = F(I,Θ)) followed by a quantization scheme appropriate to these variables
(section 5), does not make much difference (at high energies).
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If one is interested in properties of this sort one has to restrict both the set of phase
space functions, which make sense in classical mechanics, and the set of operators, which
satisfy the formal rules for observables and density operators in quantum mechanics. The
condition imposed on the two sets is that the mapping ‘dequantization followed by a
change of variables induced by a nonlinear canonical transformation’ yields essentially
the same phase space function as a mapping of the form ‘isometric transformation followed
by dequantization’. For further information on the relation between unitary (isometric)
transformations in quantum mechanics and canonical transformations in classical mechanics
we refer the reader to [29–31]. For the case discussed in this paper the first dequantization
rule is that of Weyl, while the second dequantization rule is given by equation (107); the
nonlinear canonical transformation is the mappingP,X → I,Θ, which depends on the
Hamiltonian at hand. The isometry maps an operator inHline onto an operator inHcircle

in such a way that the energy representation of the first operator coincides with the matrix
representation of the second operator with respect to the exponentials (96) withm > 0, all
other elements of this operator being equal to zero. Both the general constraints semiclassical
operators have to satisfy, and the examples studied in section 4 indicate that their energy
representations have to be essentially banded (i.e.〈n′|F̂ |n′′〉 becomes negligibly small when
|δn| exceeds a certain value) and slowly varying along the diagonal. Note that the first
condition is satisfied if theW -function is analytical inP andX; this ensures analyticity
of F(I,Θ) and hence rapid decay of the Fourier componentsFM(I) [4]. The assumed
analyticity does not imply slow variation inI and hence, by the Heisenberg principle, in the
average quantum number. If mentioned at all, the required form of the matrices is taken
for granted for all operators of physical interest (see [7] or the introduction of [4]) but this
need not be the case as the examples of section 4 show. For the phase space functions
representing the operators in theW - or theS-formalism the corresponding requirement is
that they are slowly varying functions of both variables.

The question of whether a given observable or density operator is semiclassical, in the
sense of section 4, has practical consequences when it comes to the calculation of time-
dependent expectation values. If both operators are semiclassical, it is possible to identify
theirW -representatives (which in many cases have an obvious physical meaning) with the
almost identicalS-representatives and to consider the evolution of these objects. It is at
this point where the importance of the profiles, which form the skeleton of theS-formalism,
becomes evident. These profiles are functions of the angle variable, each of them being
assigned to a Bohr orbit (I = n̄h̄, n̄ integer) or a half-Bohr orbit (I= n̄h̄, n̄ half-integer). The
set of profiles, which can be merged into a single function defined on the classical phase
space, contains the full information on the operator in question. For the density operator
the evolution in time is therefore given by that of the corresponding profiles which, due
to their definition, evolve independently of each other. If no approximation is made, each
profile evolves similar to a wave in a dispersive medium: each of the oscillating functions in
the angular variable which contributes to the considered profile, propagates in a clockwise
direction with a characteristic angular velocity and the change of the profile in time results
from the interference of these propagating waves. If the eigenvalues of the Hamiltonian
vary slowly with the quantum number, at least in the range of energy fixed by the initial
state, the characteristic angular velocities of the propagating waves become proportional
to the number of their nodes. The evolution of the profile is then similar to that of a
wave in a non-dispersive medium, i.e. a mere translation along the classical orbit which
carries the profile. If the Hamiltonian is a semiclassical operator, as is usually assumed
in literature, approximate eigenvalues can be obtained from the classical Hamiltonian and
the translation of a profile may be considered as being induced by the Hamiltonian flow
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along the corresponding orbit. Seen from classical mechanics, this semiclassical scheme
is obtained by (i) a modification of the dynamics given by the classical Hamiltonian and
(ii) modifications of phase space functions caused by the symmetry properties of the profiles.

The most localized profiles which are shifted along (half-)Bohr orbits as time proceeds,
are the functions

δSn̄,Θ(n̄
′h̄,Θ′) = δn̄,n̄′δSn̄(Θ−Θ′) (134)

δSn̄(Θ−Θ′) = 1
2[s(2n̄,Θ−Θ′)+ (−1)2n̄s(2n̄,Θ−Θ′ − π)]
s(N, θ) = sin(2N + 1)(θ/2)

sin(θ/2)
(135)

which correspond to the operators

1̂n̄,Θ =
2n̄∑

M=−2n̄

γ (2n̄+M) e−iMΘ|n̄+ 1
2M〉〈n̄− 1

2M|. (136)

Since the identity

fS(n̄h̄,Θ) = 1

2π

∫
dΘ′ fS(n̄h̄,Θ′)δSn̄,Θ(n̄,Θ

′) (137)

is valid for any profilefS , the translation in time may be transferred from the profiles
fS to the functions (134). This enhances the similarity with classical mechanics where
every phase space function may be represented as superposition of delta functions. When
time proceeds these delta spikes move along the classical trajectories in accordance with
Hamilton’s equation of motion. However, this analogy is limited. First, the operators (136)
are not positive and therefore do not represent quantum states, whereas the delta functions
of classical mechanics represent states of the system. Second, the functions (134) are not
single spikes but twin peaks located at inverse points in phase space, both of them positive
if n̄ is integer and of opposite sign if̄n is half-integer. These features are always present,
no matter how small Planck’s constant may be. They also persist when the profiles are
thickened by multiplication with step functions defined on the classical phase space and
sets of profiles are merged into a single function (equations (42) and (43)). They are also
seen in aPQ-formalism where theQ-representatives of the operators (136) consist of
two peaks at inverse points in phase space, each of them having half the diameter of the
Q-representative of a coherent state.

To explain the quantum evolution of distribution functions and expectation values by
studying the classical motion of localized objects is an idea that has been considered before
by several authors. Based on heuristic ideas developed by Heller [32], Takahashi and Shudo
[33] introduced an ensemble of weighted delta functions moving along Bohr orbits and used
it to approximate the quantum evolution of the Husimi function and to calculate from it
the expectation values〈X̂〉 and 〈X̂2〉. The considered system was a quartic oscillator and
the initial state a coherent state; note that in this example the HamiltonianĤ , the density
operatorẐt=0, and the observableŝX and X̂2 are all semiclassical operators. Excellent
agreement between the expectation values obtained from their classical ensemble and those
obtained from a full quantum mechanical treatment was found in [33], but this does not
imply that half-Bohr orbits and twin peaks are redundant. In contrast, as was already noticed
by Nauenberget al [34], a theory which makes only use of delta spikes on Bohr orbits yields
the correct revival time for a wavepacket (cf equation (125) and the following discussion)
but this revival occurs at a position in phase space which is inverse to the one predicted
by quantum theory. The difference between the present theory and the classical analogues
discussed in [33, 34] shows up in all fractional revivals of odd order where discrepancies in
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the location in phase space and related small shifts in the time dependence of expectation
values are observed. The inclusion of half-Bohr orbits and implementation of the proper
symmetry properties of the profiles (twin peaks instead of delta spikes) removes these
flaws and puts the ‘classical’ calculation of time-dependent quantum mechanical expectation
values on a better theoretical grounding.
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